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The alloys (Co, Ni)11x(Ge, Sn) form a range of superstruc-
tures in which one [111 0] repeat of the hexagonal B8 substructure
is preserved. Less well-ordered phases also occur in which con-
tinuous sinusoidal loci of diffuse scattering are observed trending
parallel to c*. The curves can be modeled as cosine waves with
maximum k at l 5 even and minimum k at l 5 odd. The shape of
the curves vary with composition and annealing temperature.
Computer simulation was used to generate two-dimensional pro-
jections of real-space occupancy patterns that produced similar
diffraction patterns. The synthesized real-space arrays were char-
acterized by sets of correlation coefficients. A Monte Carlo
algorithm was then used to find sets of two-body interaction
energies for which these structures lay at an energy minimum.
Good fits between calculated and experimental diffraction pat-
terns were found in all cases. The fitted interaction energies were
mainly positive, implying that most two-body interactions were
repulsive between sites of like occupancy. Magnitudes were sig-
nificant out to third-nearest neighboring interstitial sites. The
magnitudes tended to be largest near x 5 0.5. Additional vari-
ations of both interaction energies and resulting correlations with
composition and annealing temperature are discussed. It is shown
that the double-locus diffraction pattern observed for the Ni–Ge
system is not necessarily produced by a mechanical mixture of
two structures, but can correspond to a single phase. Interactions
Eij out to nth nearest neighbors include a larger number of
symmetrically distinct Si, jT terms than the corresponding
Su, v, wT terms in three dimensions, implying that only approx-
imate three-dimensional energies can be obtained by fitting from
the energies of this study. Mutual frustration of repulsive interac-
tions on the interstitial sublattice, which has a large number of
triangularly connected neighbors, is responsible for both break-
ing the hexagonal symmetry of the sublattice and the failure to
form structures giving conventional ‘‘spot’’ diffraction patterns.
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INTRODUCTION

The alloys (Co, Ni)
1`x

(Ge, Sn) are members of a large
group of compounds which are structurally intermediate
between NiAs and Ni

2
In. The ideal end-member structures

have hexagonal unit cells of similar dimensions (a+4 As ,
c+5 As ). The space group is P6

3
/mmc for both. The non-

transition metals B are at $[2
3
, 1
2
, 1
4
], forming a hexagonal

eutactic array. The transition metals in the NiAs structure
occupy A sites at [0, 0, 0] and 0, 0, 1

2
). In Ni

2
In, an additional

set of sites A@ are occupied at c/2 relative to the B atoms.
These sites are on average partially occupied for intermedi-
ate compositions. Ordering of the transition metal atoms in
excess of 1 : 1 stoichiometry leads to formation of a variety of
superstructures, due to different occupancy patterns in the
A@ sites. The experimental data and structural models are
discussed in detail elsewhere (1—5). Furthermore, short-
range order without long-range order in some of the com-
pounds gives rise to diffraction patterns in which distinctive
sinusoidal diffuse streaks are observed trending parallel to
the hexagonal c* axis of the substructure (4, 6). The sharp
superstructure spots of the commensurate phases lie on or
near the positions of such streaks for disordered phases of
similar composition. A feature of these compounds, as well
as the related Cu

1`x
Sn, which simplifies description and

modeling of the ordering patterns in that one [111 0] repeat
of the substructure is preserved as a lattice translation of the
superstructures. The structure may be projected down this
vector without loss of information and the ordering treated
as a two-dimensional problem. In this projection, the A@
sites appear as a rectangular grid with projected repeats
[110]/2 and c/2 relative to the B8 subcell. The correspond-
ing electron diffraction patterns show a rectangular net of
Bragg reflections with 00.2l and kk0 along the principal axes.

In an earlier paper (5), we showed that the atom dis-
tributions for the ordered superstructures can be genera-
ted as minimum-energy configurations for appropriate
combinations of two-body interactions between first- and
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second-nearest neighbors on the projected A@ sublattice.
Interaction energies were used to determine favorability of
atom-vacancy swaps on a computer simulation of the lat-
tice, and potential swaps at random locations were exam-
ined until little further change in the overall energy resulted.
This Monte Carlo strategy resulted in a real space pattern of
occupied and vacant sites from which a diffraction pattern
was calculated. Appropriate interaction energies were found
that could reproduce every known commensurate structure.
Furthermore, it was found possible to calculate the change
in structure with composition for fixed interaction energies,
assess the change in interaction energies with composition
for an experimentally determined sequence of structures in
a real system, and to predict the occurrence of two-phase
regions. We also found some combinations of interaction
energies that gave rise to continuous, sinusoidal loci of
diffuse scattering in reciprocal space. Such behavior is ob-
served in the Ni—Sn and Co—(Ge, Sn) systems experiment-
ally. The streaks trend parallel to c*, vary systematically
in both amplitude and mean k value, and may be either
uniform in intensity along c* or condensed at particular
values of l. In the Ni—Ge system, double streaks have been
observed.

In this paper, we address the following problems.
(i) What are the real-space occupancy distributions that

give rise to these sinusoidal patterns? How do the correla-
tions that describe them vary between systems, with com-
position and with temperature?

(ii) Do the sinusoidal-locus diffraction patterns corres-
pond to potentially stable ordering patterns? In other
words, do there exist sets of interaction energies E

ij
for

which the minimum-energy atom-vacancy distribution
gives these patterns? How do these parameters vary be-
tween samples?

Only occupational order—disorder is considered at this
stage, since this level of information is sufficient to repro-
duce the major features of the diffraction patterns. However,
the presence of some systematic displacement off mean
positions is indicated by a slight ‘‘size effect’’ visible in the
diffraction patterns (see Results section and Fig. 1).

METHODOLOGY

The partially ordered rectangular nets of both this paper
and Ref. (5) have associated with them two qualitatively
related but quantitatively different sets of two-body ener-
gies, which we call E

ij
and C

ij
. The subscripts i and j are the

components of a vector between two points in the lattice, in
units of a/2 and c/2, respectively. The energies E

ij
are two-

body interaction energies used to generate a partially or-
dered arrangement from a random arrangement using the
Monte Carlo algorithm outlined above. The energies C

ij
are

descriptive rather than prescriptive and express the two-
body correlations in a given atomic distribution. If signifi-
cant in magnitude ('0.5 kT), both are usually of the same
sign and of comparable magnitude, despite their noniden-
ticality.

The energies C
ij

are calculated as !(lnK), where K is the
effective equilibrium constant 4(N

VV
N

OO
)/(N

VO
)2 for the

exchange reaction

VV#OO"VO#OV.

Here, VV corresponds to a pair of vacant sites separated by
the vector [i, j], OO is a pair of occupied sites separated by
the same vector, and so on. N

VV
is the proportion of va-

cant—vacant site pairs, N
OO

is that of occupied pairs, and
N

VO
is that of vacant—occupied pairs at $(i, $j) on the

virtual lattice. C
ij

varies qualitatively in the same fashion as
the dimensionless Warren short-range order parameter a

ij
(7, 8), but with reversed sign since positive C

ij
corresponds

to unfavorable vacancy—occupied site interactions. The rela-
tionship is not linear, as can be seen from the definition of a

ij

a
ij
"Ss

i
s
j
T/x (1!x),

where x is the proportion of occupied sites, and s
i
, s

j
are

spinlike variables whose value is (1!x) for an occupied site
and !x for a vacant site (8—10). The expression above
multiplies out as

a
ij
"MN

OO
x2!N

VO
x#(1!x)#N

VV
(1!x)2N/

Mx (1!x)(N
VV

#N
VO

#N
OO

)N.

Since (N
V
#N

VO
#N

OO
) is normalized equal to 1, and x is

equal to (N
OO

#1
2
N

VO
), this becomes

N
OO

N2
VV

#N
VV

N
OO

N
VO

!1
4
N

OO
N2

VO
!1

4
N

VV
N2

VO

!1
4
N3

VO
#N

VV
N2

OO
"N

OO
N

VV
!1

4
N2

VO
.

In other words, a
ij

is the difference between the quantities
N

VV
N

OO
and 1

4
N2

VO
, whereas exp(!C

ij
) is the ratio of these

two quantities. One of the parameters a
ij

or C
ij

is always
calculable from the other, since knowledge of the composi-
tion x and the other type of order parameter is sufficient to
calculate N

VV
, N

VO
, and N

OO
as proportions of the total

number of sites. Specifically,

N
VO, ij

"M1!J1!4x (1!x) (1!K
ij
)N/(1!K

ij
)

where K
ij
"exp(!C

ij
)O1. For K

ij
"1, N

VO
"2x(1!x).

In this study, C
ij

is preferred since it is in the same units as
the prescriptive interaction energies E

ij
and is of similar

magnitude. The significance of small changes in C
ij

is there-
fore easier to assess, and it provides a useful set of initial trial
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values for E
ij
. Furthermore, whereas a

ij
can take only a lim-

ited range of values for a given x, this is not true of C
ij
. For

x40.5, the maximum positive correlation corresponds to
N

VV
"(1!x), N

OO
"x, N

VO
"0, that is, macroscopic ex-

solution of vacant and maximally occupied structures. The
corresponding a

ij
"x (1!x), and C

ij
"!R. Conversely,

the most negative possible correlation corresponds to maxi-
mal dispersal of the minority component through the struc-
ture. If the structural topology is such that there are no
odd-order closed circuits, as is the case for this study, then
the minimum possible correlation corresponds to N

VV
"

1!x, N
OO

"0, N
VO

"x, giving a
ij
"!x2/4. The corres-

ponding c
ij

is #R, so there are no constraints on the
maximum or minimum values of C

ij
.

In Ref. (5), sets of E
ij

appropriate for producing a given
diffraction pattern were determined largely by trial and
error. Iterative adjustments were made to an initial E

ij
set

until the output C
ij

and diffraction pattern matched those of
the desired structure adequately. This strategy worked well
for commensurate and nearly commensurate superstruc-
tures for which C

ij
were easily calculable on paper and were

usually either zero or $R, but was not good for simulating
the more disordered structures associated with continuous
diffuse scattering loci. The C

ij
for the latter structures

cannot be calculated a priori, E
ij

tend to be smaller in
magnitude, and small variations in them make a dispropor-
tionately large difference to the ordering pattern obtained.
In this paper, a two-stage strategy has been adopted in
which C

ij
for a given diffraction pattern were obtained first.

Because of the qualitative similarity between E
ij

and C
ij
, the

C
ij

calculated from the modulation wave synthesis were
used as trial values of E

ij
. The latter were then iteratively

adjusted in the Monte Carlo fitting program until the out-
put C

ij
agreed with those of the target diffraction pattern.

The two stages are described in detail below.

Modulation Wave Synthesis of Target Patterns

The target C
ij

values were calculated for a real-space
simulation which was generated by modulation wave syn-
thesis. This method for generating real-space patterns that
correspond to a specified diffraction pattern has been de-
scribed in detail by Welberry and Withers (11) and was
applied in order to elucidate the real-space configurations
producing specific diffraction features (12, 13). As pointed
out by Welberry and Withers (14), the resulting real-space
distribution is not unique, since the target diffraction pat-
tern contains no information about the phasing of the
modulation waves. However, the real-space solutions for
different phases differ in their multi body correlations, not
in two-body correlations. Therefore, although many dif-
ferent real-space occupancy distributions may produce
a given diffraction pattern, the C

ij
will be the same for all of

them.
Van Dyck, de Ridder, and Amelinckx (15, 16) have de-
scribed an alternative treatment of short-range ordered
‘‘transition state’’ systems that show diffuse scattering along
well-defined loci in reciprocal space. They showed that the
requirement that diffuse intensity along a locus be non
negative causes strong mutual constraint of short-range
order parameters, and it confines possible ordering patterns
within an n-dimensional domain of existence bounded by
(n!1)-dimensional hyperplanes, where n is the number of
distinct order parameters considered. Specific loci were re-
lated to specific relative weights of different short-range
order parameters around a given atom, and hence to prefer-
red local cluster geometries. As it stands, their treatment
requires that there is one of the ordering species per lattice
point of the average structure, corresponding to diffuse loci
which are periodic with the same periodicity in reciprocal
space as the average structure. For such systems, it works
well. In the B8 alloys of the present study, however, the A@
atoms are on a hexagonal close-packed array with 2 atoms
per cell of the average structure. Strong coupling between
the 2 sublattices is evidenced by the fact that the observed
sinusoidal loci have period 2c* rather than c* (cf. Ref. 6). It
should be noted that multiple scattering can obscure such
long-periodicity behavior in electron diffraction, but this
does not occur for the current samples since an l"odd
extinction condition applies throughout the plane in which
the loci undulate. The cluster approach of (15, 16) cannot be
applied to B8-type structures without extension of the the-
ory and has not been pursued in the present study, although
it is possible that the two-body correlations used to charac-
terize our samples do indeed originate as consequences of
multibody cluster interactions (6).

All the sinusoidal diffuse loci in this study had their max-
imum k values at l"even and their minima of k at l"odd.
The variation of k with l could be modeled as (co)sinusoidal
in shape with period 2c*, referred to the hexagonal B8 sub-
cell, corresponding to the c/2 repeat of the projected rectan-
gular A@ sublattice. The k coordinate for maximum diffuse
intensity as a function of l is therefore given by

k"$1
2
((k

0
#k

1
)#(k

0
!k

1
) cosnl)#N,

where k
0

is the maximum k at l"0, k
1

is the minimum k at
l"1, and N is an arbitrary integer.

Since quantitative detail in the experimental electron dif-
fraction intensities are likely to be severely perturbed by
dynamical effects, only the position of the diffuse scattering
in reciprocal space and major qualitative aspects of the
intensity distribution were modeled. The following para-
meters were used to describe the scattering:

(i) the k—l position of the continuous diffuse locus,
modeled to be a sinusoidal line with period 2c*.

(ii) the locations of any intensive diffuse spots along the
streak. Most experimental patterns showed such spots.
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The modulation wave synthesis program selected random
values of l (between #1 and !1) and calculated appropri-
ate k. When l was a uniform variate, a sinusoidal diffuse
streak of approximately uniform intensity was obtained.
Nonuniform intensity along the line was obtained by mak-
ing l a Gaussian variate with standard deviation p; this was
used to generate the strong spots centred on specific l values.
The majority of experimental diffraction patterns were
qualitatively well fitted by a superposition of a uniform line
with Gaussian-profile spots of p"0.05—0.10. Note that
‘‘uniform’’ (p"R) and finite values of p here refer to the
distribution of l. There was a unique value of k calculated for
each l, corresponding to zero width of the undulating line
for infinite size of modulation wave domain. Since the do-
mains were in practice finite (see below), a definite width of
line was obtained in the calculated patterns. Typically, half
of the modulation waves were devoted to defining the lines,
half to the spots, although the proportions of these were
adjustable. The l value at which the spots were centered was
usually l"$0.5, 1.5, but in some cases was l"integral.
The program included these options.

In order to synthesize the real-space modulation function,
domains of a fixed area were selected from the virtual lattice,
and fixed-amplitude cosine waves of the appropriate
wavevector were added to the total real-space modulation
function within that domain. In this study, the domains
were approximately circular. The positions of the domain
centers were random in both y and z, and they were continu-
ous variables rather than discrete. The phases of the waves
were therefore random. After a large number of such waves
had been summed, the cumulative modulation function was
discretized to give the occupancy of each site (0 or 1). This
was done by iteratively locating the threshold value of the
modulation function such that proportion x of lattice sites
had a higher value, where x was the intended composi-
tion for the simulation. Once a lattice of binary occupancy
variables was obtained, the corresponding C

ij
could be

calculated, and the program DIFFUSE (17) was used to
verify that the diffraction pattern corresponding to the dis-
crete real-space array was indeed close to that originally
specified.

One aspect of this simulation that requires comment is
the number of modulation waves that are superposed in
order to produce the real-space pattern. Clearly, use of too
few waves would result in a very inhomogenous real-space
occupancy pattern, whereas use of too many would gain
little in data quality while wasting computer time. Since the
simulated lattice was a 500]500 grid, the use of 1000
modulation domains with area n]202 each resulted in
about 5 waves being superposed at each lattice point. In
order to establish the optimal number of waves, test simula-
tions of a target pattern were run ranging from average of
1.7 waves per lattice point (300 waves total) to 5000 waves
per lattice point (1,000,000 waves total). It was found that
the variation of C
ij

values obtained as a function of
number of waves was less than $0.05 kT for all except
two C

ij
of large magnitude, provided the total number of

waves was over 1000. For most of the simulations of this
study, 20,000 waves of radius 20 were applied to the virtual
lattice.

Fitting of E
ij

Values to C
ij

The modulation wave synthesis produced a distribution
of occupied and vacant sites in real space which gave a dif-
fraction pattern resembling that of the sample. The occu-
pancy pattern was characterized in terms of a set of C

ij
values, which are convertible into Warren—Cowley short-
range order parameters if the composition is known. The
second stage of the modeling process in this study was to
obtain for each diffraction pattern, if possible, a set of
two-body interaction energies E

ij
giving rise to a similarly

correlated real space structure as a minimum-energy config-
uration.

As stated above, interaction energies E
ij

produce equilib-
rium configurations of vacancies and occupied sites whose
C

ij
are not numerically equal to E

ij
but which vary in the

same qualitative fashion. The main reason for the lack of
numerical agreement is that a given E

ij
interaction results in

contributions to several C
ij

correlations. For example, pos-
itive E

10
will tend to produce positive C

10
(avoidance of

similar occupancy in adjacent sites along b) but through
self-coupling will also make negative contributions to C

20
,

positive to C
30

and so on. Away from the principal axes, the
situation is more complex since the energy E

ij
operates

between points separated by vectors [i, j], [i,!j], [!i, j],
and [!i,!j], all related by the symmetry of the projected
sublattice. Correlations C

UV
are affected for any [u, v] that

can be constructed as sums of integral multiples of these
vectors. Furthermore, this is generally true for any pair of
E
ij

which are not related by symmetry. For example, E
12

alone affects C
ij

with i"2m, j"4n and with i"2m#1,
j"4n#2 (m, n integers). E

11
affects C

ij
with i"2m, j"2n

and with i"2m#1, j"2n#1. If both are nonzero, all
C

ij
are affected, since any i and j can be made out of

a suitable combination of multiples of [1, 1] and [1, 2]. It is
impossible to derive analytically the E

ij
that correspond to

a given set of C
ij

values.
For this study, it was necessary to start with a trial set of

E
ij
, obtain an equilibrated configuration of vacancies and

occupied sites, calculate the corresponding C
ij
, and adjust

E
ij

iteratively until a good fit between calculated C
ij

and
their target values was achieved. The program used to do
this was a modification of that used in (5) adapted to include
longer-range interaction terms out to i"6, j"4. It will be
seen below that these longer range terms are necessary to
define the fine detail in the more complicated diffraction
patterns.



TABLE 1
Characteristics of Experimental Systems as Modeled

in the Modulation Wave Synthesis

Simulation
number System x k

0
k
1

l (spot) p

1 Co—Sn ? 0.37 0.24 — —
2 Ni—Sn 0.34 0.40 0.20 0, 1 0.05
3 0.525 0.37 0.24 0, 1 0.05
4 0.61 0.36 0.28 0, 1 0.05
5 Co—Ge 0.63 (lt) 0.36 0.32 0.5, 1.5 0.05
6 0.63 (ht) 0.36 0.27 0.5, 1.5 0.1
7 0.70 (ht) 0.38 0.26 0.5, 1.5 0.1
8 0.86 (lt) 0.40 0.26 0.5, 1.5 0.1
9a Ni—Ge 0.70 0.32 0.22 0.5, 1.5 0.1
9b 0.41 0.33 0.5, 1.5 0.1
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The program used to obtain E
ij

started with trial values
that were usually the C

ij
set obtained from the modulation

wave synthesis. After the Monte Carlo routine had exam-
ined every site in the real space array an average of once for
the possibility of exchange with another site, the C

ij
were

calculated for the occupation pattern so far, and the E
ij

values adjusted according to the difference between actual
and target C

ij
. Best fits, characterized by the root-mean-

square deviation between fitted and target C
ij

values for all
[i, j] where the E

ij
was a refineable parameter, were (with

one exception) better than 0.1 kT and in some cases they
were better than 0.01 kT. Usually, 20—60 cycles of iteration
were needed until this level of agreement was reached, and
the fit did not improve significantly beyond the best ob-
tained at that stage.

The maximum magnitude of E
ij

permitted was set at
$5.0 kT, as in (5), given the limited size of the real space
array. A magnitude this large for C

ij
corresponds to a max-

imum N
VO

of only 0.0759 at x"0.5. If N
VO

is small, then
very small changes in it result in large changes to C

ij
, so the

values obtained become less precise. In any case, few C
ij

ob-
tained from the modulation wave synthesis were found to be
as big as $5 kT. This limiting range was chosen for the E

ij
values given that they were comparable in size to the corres-
ponding C

ij
, and because it was found that allowing very

large interaction energies led to them dominating the fitting
process and prevented good fits for C

ij
associated with

smaller E
ij
.

EXPERIMENTAL DIFFRACTION PATTERNS

A brief description of the diffuse lines seen in the
(Co, Ni)—(Sn, Ge) systems is set out below. It should be
noted that all indices were obtained by direct measurement
from electron diffraction patterns and are only approxim-
ate. The width of the lines and their faintness at some
important values of l imply an error in measurement of k of
at least $0.02. Any additional diffuse structure was very
faint. The lines modeled in this study appear to arise pre-
dominantly from occupational short-range order, although
a slight modulation of intensity resulting from a size effect
was visible in some experimental patterns (Ni—Sn and
Co—Ge systems).

The experimental diffraction patterns are described be-
low, along with the details of their modeling in the modula-
tion wave synthesis. Experimental patterns have been
published previously for the Sn-bearing systems (6) and the
Ni—Ge system (4). The numerical parameters used to define
the diffuse lines in the simulations are summarized in Table 1.

Co—Sn System

The simplest undulating diffuse line type was observed in
the Co—Sn system, which has a limited solid solution range
of x"0.38—0.61 (6, 18, 19). Slowly cooled samples had
an ordered superstructure, but those quenched from
1000—1150°C showed continuous diffuse curves (Ref. 6, Fig.
2). The intensity variation along the diffuse lines was only
slight, and was not included in the model. The value
k ranged from k

0
"0.37 at l"even to k

1
"0.24 at

l"odd.The composition of the sample whose diffraction
pattern was shown in Ref. (12) was not known exactly but
x40.5.

For a given diffraction pattern, the E
ij

values vary with x,
but are symmetrical about x"0.5. Extreme values were
therefore fitted for x"0.38 and x"0.50, using the k values
measured.

Ni—Sn System

Like the Co—Sn system, continuous diffuse lines were
found for samples quenched from high temperature. The
form of the sinusoids varied noticeably with composition.
At x"0.34, k

0
"0.40 and k

1
"0.20. However, at x"

0.525, k
0
"0.37 and k

1
"0.24, and at x"0.61, k

0
"0.36

and k
1
"0.28. Sharp spots (p"0.05) occurred at l"inte-

gral (Ref. 6, Fig. 5). These were modeled by using half of the
modulation waves to generate the spots (Gaussian-distrib-
uted l with p"0.05) and half to contribute to the continu-
ous lines. Real space distributions and diffraction patterns
were calculated corresponding to the experimental electron
diffraction patterns with x"0.34, 0.525, and 0.61.

The experimental patterns (6) show a slight intensity
transfer from lower to higher angle diffuse loci, indicating
a size effect similar to that in the Co—Ge system (see below).

Co—Ge System

Experimental electron diffraction patterns for this system
have not been published previously and are shown in Fig. 1.



FIG. 1. Experimental electron diffraction patterns for the Co—Ge sys-
tem. Viewing direction parallel to [111 0]

B8
. (a) x"0.63, annealed at 600°C.

(b) x"0.63 annealed at 982°C (c) x"0.86, approximately. Cooled from
700°C to 500°C at 10°C/min, then quenched.
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In the Co—Ge system, the intensity maxima were at l"0.5
and 1.5 rather than integral l values as seen in the Ni—Sn
system. For x"0.63, at the low-x end of the composition
range studied, k

0
"0.36, k

1
"0.32 in a sample quenched

from 600°C and k
0
"0.36, k

1
"0.27 in a quench from

982°C. The spots in the low-temperature diffraction pattern
were somewhat sharper than all other Co—Ge patterns, and
p was set accordingly as 0.05 rather than the usual value 0.1.
For x"0.70 quenched from 1200°C, k

0
"0.38 and k

1
"

0.26. The highest x sample was inhomogeneous, but the
majority phase had estimated x"0.86. This sample was
cooled at 10°C/min over the temperature range 700—500°C
and then quenched. Nevertheless, the spots in the diffraction
pattern were as broad as those of the high-temperature
samples. For this sample, k

1
"0.26, and k

0
"0.40 if it is

assumed that there are sinusoidal loci similar to those for all
the other samples. However, the loci appear to merge in
broad patches of diffuse intensity at l"2n, and this sample
appears to be atypical.

The last three patterns suggest that k
0
gradually increases

with x. The low-temperature low-x pattern is the only one
for which k

1
O0.26—0.27 in this system. Fits were calculated

for x"0.63 quenched from 600°C and from 982°C, and also
the pattern for x"0.86. The three corresponding diffrac-
tion patterns span the range of behavior observed in this
system.

A slight atomic size effect (7, 10, 12) is noticeable in the
diffraction patterns of Fig. 1b and 1c, in that the intensities
of the lines at !0.5(k(0.5 are systematically lower than
those of their higher angle counterparts at 0.5(Dk D(1.0.
This implies that a local expansion of the crystal structure
occurs around regions of relatively low mean local scatter-
ing factor, and hence is consistent with a slight relaxation of
atoms away from vacant A@ sites and toward occupied ones.
Note that this distortion is in the opposite sense to that
noted in the structure refinement of g@-Cu

6
Sn

5
(2, 5), where

there is overall expansion around the occupied sites.

Ni—Ge System

This system has the widest composition range out of the
four considered in this paper. Many commensurate super-
structures have been characterized, which are discussed in
detail elsewhere (4, 5). Undulatory diffuse loci were only
observed at the high-x end of the composition range
(x'0.7). The unusual feature of these samples was the
occurrence of two sets of curved loci, one at higher k than
the other. Spots occurred near l"0.5 for both. The spots
were distinctly elongated, so p"0.1 was used. For a sample
with x"0.70, the curves had k

0
"0.32 and k

1
"0.22 for

the outer, stronger curve and k
0
"0.41, k

1
"0.33 for the

inner, weaker curve.The modulation wave synthesis used
25,000 waves for the outer curve and 15,000 for the inner,
giving a 5 : 3 intensity ratio. Similar patterns were obtained



FIG. 2. Plot of k
0

against k
1

for the samples of Table 1. Black circle
indicates Co—Sn system. Shaded circles Ni—Sn, cross-hatched circles
Co—Ge. Effect of varying x and ¹ shown for the latter two cases. Black
squares indicate the two lines for the Ni—Ge system.

FIG. 3. Real space occupancy patterns for the fits to the Co—Sn diffrac-
tion pattern with (a) x"0.34 and (b) x"0.5. The pseudohexagonal c axis
is vertical. The black and white pixels correspond, respectively, to columns
of occupied and vacant sites projected along [111 0]

B8
.
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experimentally for higher x values up to 0.88, but the sam-
ples were no longer homogeneous: the appearance of strong
spots at (0, 0, 1) and (0.5, 0.5, 0) implied the presence of do-
mains with a commensurate Ni

2
Ge superstructure.

The characteristics of nine different patterns as modeled
are summarized in Table 1, and the variation of k

1
with k

0
is

depicted in Fig. 2. It is apparent that most of the curves lie
on a single trend of k

1
increasing as k

0
decreases. The

variation with x is in the opposite sense for the Ni—Sn and
Co—Ge curves. Note that the two curves coexisting in the
Ni

1.70
Ge diffraction pattern lie on either side of the trend

for all the other curves, suggesting that the ‘‘normal’’ single
locus in this system is destabilized and disproportionates
into a pair on opposite sides of the usual k—l trend.

Close agreement was obtained between the C
ij

from the
modulation wave synthesis and those obtained from the
Monte Carlo fitting program in almost all cases. Root-
mean-square deviations between the two ranged from 0.007
to 0.034, except for simulation d4 (0.073) and d8 (0.186).
The strong diffuse features were very similar in diffraction
patterns calculated for the two with the exception of simula-
tion d8, although those from the Monte Carlo distribu-
tions tended to have less sharp lines and more faint spurious
detail. Nevertheless, the overall intensity distributions in the
Monte Carlo patterns closely resembled those of the elec-
tron diffraction pattern being modeled. Therefore, the real
space distributions and C

ij
values from the modulation

wave synthesis are not considered further, although they
constituted a necessary intermediate stage in obtaining the
data sets from the Monte Carlo E

ij
fitting routine, which are

discussed in detail below. Note that the fact that it was
possible to obtain good matches to the diffraction patterns
while refining E

ij
in the Monte Carlo routine implies that

there exists a set of E
ij

values for which the equilibrium
structure gives the target diffraction pattern. It is therefore
possible, although not necessary, that the structure obtained
is a thermodynamically stable phase under appropriate con-
ditions.

RESULTS

Portions of the fitted real space occupancy distributions
for the Co—Sn system are shown in Fig. 3. Note that the real
space figures are analogous to high-resolution transmission
electron micrographs in that each pixel represents a column
of filled or empty A@ sites projected down [1 11 0]. Similar
data are shown in Fig. 4 for the Ni—Sn system, and cal-
culated diffraction patterns for the Sn-bearing systems are
shown Fig. 5. Real space and reciprocal space patterns are
shown in Figs. 6 and 7 for the Co—Ge system, and Figs. 8a
and 8b for the Ni—Ge double-line structure.

Note that very small domains of commensurate c@-
Co

3
Sn

2
type structure are visible in the real space patterns

for the Sn-bearing phases (Figs. 3—4). These appear to be



FIG. 4. Real space occupancies for the fits of the Ni—Sn system. (a)
x"0.34, (b) x"0.525, (c) x"0.61.

FIG. 5. Calculated diffraction patterns for (a) Co
1.38

Sn, (b) Ni
1.34

Sn,
and (c) Ni

1.61
Sn using the parameters of Table 1. Compare (a) with Ref. (6),

Fig. 2 and (b)—(c) with Ref. (6), Fig. 5.
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examples of local approximation to ordered superstructures
in structures which are generally devoid of long-range trans-
lational repetition.

Domains of Co
2
Ge composition can be seen in Fig. 6c. It

is noteworthy that the corresponding diffraction pattern
(Fig. 7c) is by far the worst approximation to the corres-
ponding experimental pattern (Fig. 1c) obtained in this
study. The experimental diffuse scattering does not appear
to lie on a simple sinusoid with period 2c* for this sample
(see discussion below). The match between Fig. 1(a, b) and
Fig. 7(a, b) is considerably better, although not as good as
those between Fig. 5(a—c) and Fig. 8b and the experimental
patterns published previously (6).



FIG. 6. Real space occupancies for the fits of the Co—Ge system. Black
and white reversed relative to Figs. 2 and 3 for clearly, since all x'0.5. (a)
x"0.63, low temperature (b) x"0.63, high temperature, (c) x"0.86,
approximately.

FIG. 7. Calculated diffraction patterns corresponding to the real space
distributions of Fig. 6 (simulations d6 to d8), and also to the experimental
diffraction patterns of Fig. 1. Note reasonably good agreement with experi-
ment for (a) and (b) but bad agreement for (c).
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DISCUSSION

Variation of C
ij

The C
ij

values for the Co—Sn system were characteristic
of sinusoidal diffuse lines unmodified by spots or other
intensity modulation. The C

0j
values were all small,
corresponding to poor correlation along the c direction in
real space and continuous loci of diffuse scattering trending
along c*. Conversely, the C

i0
values tended to be large in

magnitude, implying good correlation in the xy plane in real
space and condensation of the diffuse structure normal to
c*. Strongly positive C

20
, negative C

30
, and relatively small



FIG. 8. The Ni
1.70

Ge ‘‘double line’’ and related structures (a) lattice
realization, (b) calculated diffraction pattern, and (c) diffraction pattern for
equilibrated structure with E

ij
"0 for i"5,6. Note poorly defined lines

and loss of double-line structure.
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negative C
40

all suggested that the diffuse lines in the dif-
fraction pattern intercept the l"0 line near (1

3
1
3

0), approx-
imately consistent with the observed value of k

0
"0.37.

Perturbation of the diffuse line away from constant k was
implied by the presence of ‘‘diagonal’’ correlations (i, jO0)
of significant magnitude. In this case, these were C
i1

(i"1—6) and C
25

, particularly. All of the fits obtained in this
study showed several significant diagonal correlations,
which varied in a complex fashion with the shape of the
sinusoidal locus. The overall trends toward more positive
and more negative values were similar in the C

ij
values and

the corresponding E
ij
, but the latter tended to be more

positive.
The occurrence of spots on the lines correlated with larger

magnitudes for C
02

and C
04

, which were either both nega-
tive (spots at l"integral positions, as for Ni—Sn) or positive
and negative, respectively (spots at l"half-integral, as for
the Ge-bearing systems). Corresponding negative and posit-
ive deviations occurred in E

02
, E

04
relative to the values for

E
01

and E
03

for all simulations except the poorly fitted d8.
The correlation energies C

01
, C

04
, C

21
, and C

30
were the

only such terms that were negative throughout, implying
a tendency toward similar occupancy of sites separated by
the corresponding vectors in all systems. Conversely, C

10
,

C
11

, C
20

, and C
41

were always positive. The positive sign of
C

i0
for i"1, 2 and negative sign for i"3 implied avoidance

of similar occupancies for immediately adjacent A@ in a
(001)

B8
layer of the structure, combined with a preference for

the ‘‘honeycomb’’ ordering pattern noted in many of the
commensurate structures (1—5). Other correlations varied
systematically from system to system. In particular, C

02
was

negative for the Sn-bearing phases and positive for the
Ge-bearing phases, consistent with the tendency for spots to
appear in the diffraction patterns at l"integral positions in
the former and l"half-integral in the latter. C

23
varied

similarly, which is likely to be a consequence of coupling to
C

02
through C

21
, which was always negative (i.e., positive

correlation).

Variation of E
ij

The overall pattern of variation for E
ij

was similar, but
with some sign changes for small magnitudes due to the bias
toward more positive values mentioned above. In fact, out
of 34 such terms, 20 were consistently positive in all simula-
tions. There is an implication that many of the correlations
observed indicate the least unfavorable relative positions for
like occupancies rather than any attractive interaction as
such. The main exception was the E

30
term, negative except

for one Ni—Sn simulation, which supports the idea that
there is a definite driving force for honeycomb ordering in
the xy plane. E

51
was also negative except for the Ni—Ge

simulation. Interestingly, E
62

behaved in the opposite
fashion, suggesting that these two relatively long-distance
(ca. 11 As ) interactions may be important in producing the
double-line diffraction pattern in this system. Although long
relative to the 4—5 As shortest A@—A@ distances in these mater-
ials, such distances are still appreciably shorter than the
elastically-mediated interactions known to occur between
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plane defects in some oxide systems (20—22), and it seems
feasible that interaction between the strain fields around A@
substituents and their neighbors over '10 As may deter-
mine these long-range correlations. The nature of the Ni—Ge
phase is discussed in more detail below.

Variation with x

Trends with varying composition within the same system
were not obvious. The two simulations of the Co—Sn diffrac-
tion pattern using different x give similar C

ij
, as would be

expected, but suggest that larger E
ij

are needed to obtain
these correlations for x near 0.5 than for small or large x.
Consistent with this hypothesis, the fitted E

ij
for the Ni—Sn

system were larger positive for the middle x value than the
two extrema in 22 out of 34 cases. However, the C

ij
varied

far less consistently. All C
2j

, C
31

, and also C
5j

for even j,
increased with x. C

3j
for even j, C

5j
for odd j and C

60
decreased with x. Several of these correlations changed sign
across the series. The other values had maxima or minima at
intermediate x or stayed nearly constant. Comparison of
simulations d7 and d8 for the Co—Ge system showed very
different behavior. The high-x simulation had C

ij
that were

in general the same sign but larger in magnitude than those
of the low-x simulation, while the E

ij
were in general of the

same sign but smaller for the high-x phase. There is an
implication that the changes in the Co—Ge patterns with
x are a consequence of interactions becoming generally
stronger as the composition approaches x"0.5, whereas
there is an additional, complex change in the interactions
with composition in the Ni—Sn system.

Effect of Temperature

The only simulations that allowed the effect of annealing
temperature to be assessed were the two for Co

1.63
Ge. No

consistent pattern of temperature variation was apparent in
the C

ij
values. However, almost all of the fitted E

ij
energies

were larger in magnitude at high temperature. A few E
5j

and
E
6j

became smaller or changed sign.

Poor Fit for Sample d8

The poor fit obtained for Co
1.86

Ge (simulation d8) may
imply that projection down [111 0] did not faithfully repres-
ent the three-dimensional structure for this sample. There
was an additional diffuse patch of intensity around (1

2
1
2

0) in
the experimental hhl diffraction pattern for this phase (Fig.
1c). Furthermore, an additional set of diffuse streaks, not
observed for any of the other samples of this study but
similar to those observed in the Fe—Ge system, has been
seen in h0l patterns for Co

1.86
Ge at 1

2
0 l (A.-K. Larsson,

unpublished data). It is possible that these two features have
a common origin but arise from differently oriented twin
lamellae, since the additional patches in the hhl pattern have
position vector [1

2
1
2

0]*"[0 1 0]*#[1
2
1
2
1 0]*, and the latter

vector is related by 60° rotation to [1
2
0 0]*, the position

vector of the strongest part of the h0l diffuse streak.

Nature of the **Double-Line++ Phase

An important aspect of the modeling strategy used in this
study is that it is possible to construct structures corres-
ponding to hypothetical diffraction patterns, analyze their
correlations, and find E

ij
values, if any, which produce them

as equilibrium states. This was done for possible diffraction
patterns related to the observed for the Ni—Ge system,
namely:

(i) A pattern with a single set of diffuse loci at k values
intermediate between the two of the actual sample. A 5 : 3
weighted average was used.
(ii) Modulation wave syntheses and E

ij
fits were calculated

for two single-line patterns with lines corresponding to each
of the two in the experimental phase. C

ij
and E

ij
were then

calculated for a 5 :3 ‘‘mechanical mixture’’ of the two.
The correlation and interaction energy data are given in

Table 2 for (a—b) the fit to the double line pattern itself, (c—d)
single-line case (i), and (e) interaction energies for mechan-
ical mixture case (ii). Averaged C

ij
values are not given for

latter case since they were very similar to those of the
double-line pattern (Table 2a).

The majority of E
ij

and C
ij

for the double-line pattern and
case (i) are very similar. Seven C

ij
differ by more than 0.5 kT

(ij"20, 30, 50, 52, 60, 61, and 62). All are larger in magni-
tude for the single-line case but of the same sign as those of
the double-line except C

60
and C

62
, which differ in sign

(along with C
51

and C
64

). Two E
ij

also differ in sign: E
52

and
E
61

. Another eight differ by more than 0.5 kT between the
two data sets. For instance, E

40
is large and E

50
small for

the double-line fit, whereas the converse is true for the
single-line case. Note that all the major differences are for
relatively long range correlations and interactions (i"4—6),
implying that it is these third-nearest neighbor interactions
between A@ sites which favor the double-line structure over
the single-line structure. This was confirmed by running
a Monte Carlo equilibration with the E

ij
fixed at the value

of Table 2b except for i"5—6, which had E
ij

set to zero. The
corresponding real-space array gave a diffraction pattern
with large diffuse spots at l"0.5 and 1.5, badly defined
lines, and no discernible double line structure (Fig. 8c). The
pattern was similar to those of the modulated structures
obtained in Ref. (5). The fact that patterns with single
sinusoidal loci were (somewhat fortuitously) obtained in
that paper shows that second-nearest neighbor interac-
tions alone are sufficient to define single undulations in
some cases, but not the double-line structure of the Ni—Ge
system.



TABLE 2
Cij and Eij for Simulations Relating to the Double-Line

Ni–Ge Sample

(a) C
ij

for simulation of double-line phase
d9 Ni—Ge x"0.70 cycle 51 rms"0.0085

i"0 1 2 3 4 5 6

C
ij
, j"0 0.93 1.85 !1.22 !0.26 0.18 0.48

1 !0.02 0.20 !0.20 !0.25 0.22 0.18 !0.06
2 1.17 !0.38 !0.69 0.60 0.20 !0.19 !0.45
3 0.02 !0.07 0.02 0.08 !0.09 !0.10 0.05
4 !0.56 0.17 0.36 !0.28 !0.10 0.08 0.21

(b) E
ij

for simulation of double-line phase

d9 Ni—Ge x"0.70 cycle 51 rms"0.0085

i"0 1 2 3 4 5 6

E
ij
, j"0 1.78 2.28 !0.95 0.64 0.17 0.89

1 1.14 1.20 0.14 0.22 0.77 0.90 0.52
2 1.03 0.65 0.27 0.83 0.36 0.48 !0.14
3 0.71 0.52 0.60 0.44 0.42 0.15 0.10
4 0.49 0.40 0.48 0.28 0.34 0.14 0.11

(c) C
ij

for single line phase with intermediate k
0
"0.354, k

1
"0.261

Ni—Ge x"0.70 cycle 25 rms"0.0082

i"0 1 2 3 4 5 6

C
ij
, j"0 0.98 2.47 !2.30 !0.28 2.02 !0.75

1 0.03 0.19 !0.30 !0.26 0.71 !0.18 !0.65
2 1.19 !0.39 !0.83 1.06 0.13 !1.13 0.68
3 0.03 !0.08 0.07 0.11 !0.27 0.07 0.36
4 !0.55 0.18 0.43 !0.46 !0.11 0.52 !0.27

(d) E
ij

for single line phase

Ni—Ge x"0.70 cycle 25 rms"0.0082

i"0 1 2 3 4 5 6

E
ij
, j"0 1.06 1.53 !1.76 0.02 1.00 0.41

1 0.83 0.62 0.09 0.36 1.11 0.21 !0.67
2 0.86 0.37 0.18 0.34 0.34 !0.17 0.17
3 0.58 0.45 0.32 0.30 0.25 0.27 0.19
4 0.34 0.32 0.34 0.24 0.25 0.08 0.11

(e) E
ij

for 5 :3 mechanical mixture of two single line phases

Ni—Ge x"0.70

i"0 1 2 3 4 5 6

E
ij
, j"0 1.99 3.09 !1.24 0.77 0.62 0.72

1 0.81 1.08 0.14 0.29 0.89 0.98 0.36
2 1.07 0.34 0.21 0.77 0.50 0.23 !0.04
3 0.66 0.53 0.40 0.52 !0.27 0.20 0.32
4 0.38 0.52 0.44 0.34 !0.11 0.20 0.08
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When the case (ii) data (Table 2e) and those for the
double-line phase (Table 2b) are compared, all C

ij
values

except three, and all E
ij

except two, are very similar. This
prompted the question as to whether ‘‘the double-line
phase’’ is homogeneous, or is actually a mosaic of small
domains corresponding to each of the two single-line struc-
tures. The two single-line structures that were averaged to
form the case (ii) data had C

ij
of the same sign and/or small

magnitude for i43, but were distinguishable on the basis of
longer range correlations such as C

40
, C

42
, C

44
, C

50
, and

C
51

, which were of substantial magnitude but opposite sign
in the two structures. Therefore, any domains of either
structure that were present could be imaged by making
a map of sites which had zero, one or two neighbors of the
same occupancy at $[4, 0] or $[5, 0], corresponding to
large positive, small and large negative values for the ‘‘local
average’’ C

i0
, respectively. This was done, and the correla-

tion map obtained from the real-space structure of the
double-line phase gave an intimate, apparently random
intermingling of pixels with 0, 1 or 2 like neighbors. A sim-
ilar map with the number of like neighbors averaged over
3]3 domains showed that almost all such domains had on
average one like and one unlike neighbor per site (rounded
to the nearest integer). Sites with different numbers of like
neighbors were intermingled on a unit-cell scale, smaller
than the scale at which the two single-line structures would
be distinguishable. Therefore, the double-line structure ob-
tained from the Monte Carlo routine is better regarded as
a single phase than as an intergrowth. The extreme sim-
ilarity of diffraction patterns and C

ij
values for this single

phase and a mechanical mix of two phases implies that
multibody correlations are necessary to distinguish the two.
For instance, the single phase will tend to have sites with
two like neighbors at $[4, 0] in close proximity to sites
with two unlike neighbors, while the converse is true when
large domains of single-line phases are present. This differ-
ence can be expressed using four-body correlations
s
00

s
ij
s
40

s
(4`i)j

, where the s are occupancy pseudo-spin vari-
ables.

Although it is not possible to prove that the experimental
sample was single-phase without data on multibody cor-
relations, we have shown it to be possible that the intricate
diffraction pattern observed may be produced by a single
phase. Equilibration using a modification of the Monte
Carlo routine of Ref. (5), with E

ij
set to those of Table 2b,

showed almost no change in C
ij

or calculated diffraction
pattern from cycle 20 up to cycle 857, implying that the
double-line pattern represents true thermodynamic equilib-
rium for these E

ij
.

Homogeneity of Simulated Structures

A feature of all the lattice realizations obtained from the
Monte Carlo routine that was not observed in the output
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from the modulation wave syntheses is that about 4% of the
area of the projected lattice was composed of domains of
pure end-member composition (x"0 or x"1, depending
on which was closest to the average composition). Analysis
of the compositional variation of different-sized random
samples of the lattice showed that the end-member domains
were about 6—12 pixels across (one pixel was b

B8
/2]c

B8
/2).

Comparison of the 857-cycle double-line structure with
those from shorter run times showed that the domains did
not grow or shrink with time. Since these domains were
similar in size and concentration for all simulations, they are
probably a kinetically inert artifact of the Monte Carlo
reordering process, being difficult to remove once formed
rather than genuinely stable. Interestingly, the interior por-
tion of only one lattice realization (Co

1.86
Ge, Fig. 6c)

showed visually discernible domains of Ni
2
In type, and this

was a relatively poor simulation of an atypical sample. It is
likely that most of the inhomogeneity in bulk composition is
concentrated around the edges of the 500]500 arrays and is
purely a consequence of the finite size of the array used.

Extension to Three Dimensions

Although the energies calculated in this study quantitat-
ively determined (E

ij
) or described (C

ij
) the two-dimen-

sional projections of the corresponding occupancy
distributions, it is not straightforward to convert them
quantitatively into equivalent energies in three dimensions.
Each interaction energy is, to a first approximation, the sum
of several three-dimensional interaction energies which pro-
ject onto the same [i, j] vector. Likewise, each C

ij
is an

average of the correlations along each of these vectors.
A unique mapping of two-dimensional terms onto the three-
dimensional ones may be feasible if the number of indepen-
dent [i, j] terms in the projection and the number of sym-
metrically distinct three-dimension terms is equal, and the
matrix relating them is nonsingular. In practice, such condi-
tions are never attained for these systems. In the three-
dimensional structures, the A@ sites are linked to 20 first-
nearest neighbors by corner- and face-sharing of their co-
ordination polyhedra (5). The intersite vectors belong to
4 symmetrically distinct types: S1 0 0T, S2

3
1
3
1
2
T, S2

3
4
3
1
2
T, and

S0 0 1T (all indices with respect to the hexagonal B8 subcell).
In the two-dimensional model, these four types project onto
Si, jT"S1, 0T#S2, 0T, S0, 1T#S1, 1T, S0, 1T#S2, 1T,
and S0, 2T, respectively—a total of 6 distinct species of Si, jT
(indexed on the a/2]c/2 rectangular net). The number of
symmetrically distinct Si, jT species remains larger than that
of three-dimensional Su, v, wT when second-nearest neigh-
bors and third-nearest neighbors are considered (the relative
numbers are 16 :12 and 30 :26, respectively). This is a conse-
quence of the large number of neighbors, combined with the
low symmetry of the two-dimensional projection relative to
that of the three-dimensional average structure. Some con-
straints on three-dimensional correlations could be ob-
tained by least-square fitting in principle, although correla-
tions between them would limit the possibility of obtaining
precise values.

The large number of Su, v, wT interneighbor vectors to be
considered, and their high multiplicity, imply that a full
three-dimensional model would be three orders of magni-
tude more computationally intensive than the current simu-
lations, and hence not practical at the present time.
However, characterization of a three-dimensional model
using a cluster approach may be a viable direction for future
work.

Absence of the Hexad Axis in 2-D Simulation

The loss of hexagonal symmetry in projection does not
have much adverse effect on the faithfulness of the simula-
tions in this study (Co

1.86
Ge appears to be an exception).

The A@ sublattice contains many triplets of sites that are
connected in a triangular fashion. Repulsive interactions
between like occupancies necessarily lead to frustration of
ordering schemes in such a topology. In particular, ordering
schemes that are a response to repulsive interactions do not
in general maintain the hexagonal symmetry of the interac-
tions. A preliminary study has been done of ordering in
a hexagonal net like the (001) plane of the compounds of this
study. The combination of repulsive S1, 0T and S2, 0T inter-
actions and attractive S1, 11 T interactions (all $2 kT in
magnitude) was found to be sufficient to generate large
nonhexagonal domains. For composition x"0.3, there was
a tendency to form zigzag chains of occupied or vacant sites,
defining a unique [111 0] direction, as observed in the experi-
mental systems. Locally hexagonal domains were also seen
with honeycomb ordering. A portion of the lattice realiz-
ation illustrating these phenomena is shown in Fig. 9.

CONCLUSIONS

For each of the experimental electron diffraction patterns,
we have obtained by modulation wave synthesis a real-
space distribution which gives a similar diffraction pattern.
Good fits obtained using a Monte Carlo routine suggest
that all these structures can be produced by two-body
interactions and are minimum-energy structures for appro-
priate sets of interaction energies E

ij
.

The fitted interaction energies, and the correlations
C

ij
which describe the structure, vary with the system, the

composition x, and the annealing temperature of the
sample.

In summary, we conclude that there exist sets of two-point
interaction energies E

ij
for which any of the observed diffrac-

tion patterns can correspond to stable structures. All the
observed patterns can be produced by single phases. Small
domains of A

2
B or AB stoichiometry that are statistically



FIG. 9. Spontaneous breaking of hexagonal symmetry in the (001)
B8

plane due to mutual frustration of repulsions. Note ordering of vacant and
occupied sites into vertical strips parallel to a preferred [111 0] direction. Interaction energies were #2, !2, and #2 kT along S100T, S111 0T, and S200T
vector sets, respectively. Composition was x"0.3.
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detectable in the fitted lattice realizations are likely to be
kinetically persistent nonequilibrium features or edge ef-
fects. The observed sinusoidal lines in reciprocal space arise
because the interaction energies couple so as to produce
relatively poor correlations along c (particularly C

01
and

C
03

) but strong correlations both perpendicular and oblique
to c. In the case of the double-line patterns from the Ni—Ge
system, significant magnitudes for interaction energies with
i"5—6 are essential to produce the observed patterns.
These correspond to third-nearest neighbor interactions
between A@ sites in the structure. In the Ni—Ge system, such
terms destabilize single-curve diffraction patterns at the
usual k values, and give rise to patterns with two nearly
parallel curves at higher and lower k.

The large number of nearest neighbors, significant magni-
tude of interactions out to second- and third-nearest neigh-
bors, and particularly frustration due to the triangular
interconnection pattern and repulsive nature of most inter-
action energy terms are all responsible for the failure of
these phases to form conventional commensurate or incom-
mensurate modulated superstructures. In three dimensions,
the interactions may well show the hexagonal symmetry of
the sublattice, even though frustrated repulsion leads to
breaking of this symmetry in the resulting local ordering
schemes. The sinusoidal-locus structures are potential equi-
librium states for appropriate sets of two body interaction
energies and may be regarded as a distinct state between
conventional modulated structures giving spot diffraction
patterns on the one hand, and full disorder on the other,
equating with the ‘‘transition state’’ of van Dyck et al. (15).
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